Methylation status of DDIT3 gene in Chronic Myeloid Leukemia
نویسندگان
چکیده
BACKGROUND DNA-damage-inducible transcript 3 (DDIT3), a candidate tumor suppressor gene (TSG), has been found involved in the regulation of cellular growth and differentiation. The epigenetic changes of TSGs are recently recognized as an abnormal mechanism contributing to the development of chronic myeloid leukemia (CML). The aim of this study was to investigate the methylation status of DDIT3 gene in CML patients. METHODS The methylation status of DDIT3 promoter was detected in the bone marrow mononuclear cells from 53 patients with CML using methylation-specific PCR (MSP). The expression levels of DDIT3 and bcr/abl transcript were determined by real-time quantitative PCR (RQ-PCR). Clinical data of these patients were collected and analyzed. RESULTS The aberrant methylation of DDIT3 gene promoter was found in 35 of 53 (66%) CML cases. Correlation was not found between DDIT3 promoter hypermethylation and the age, sex, hemoglobin concentration, platelet counts, chromosomal abnormalities, bcr/abl transcript, and staging of CML patients (P > 0.05), but found between DDIT3 promoter hypermethylation and WBC counts of CML cases (R = 0.781, P < 0.001). The level of DDIT3 transcript in CML patients was significantly lower than that in controls (median 3.28 vs 19.69, P < 0.001), however, there was no difference in the level of DDIT3 transcript between methylation-positive CML cases (0.05-65.32, median 2.13) and methylation- negative CML cases (0.12-126.04, median 3.92) (P > 0.05). CONCLUSION Our results demonstrate that aberrant methylation of DDIT3 occurs in CML frequently.
منابع مشابه
Methylation Status of SOX17 and RUNX3 Genes in Acute Leukemia
Background: Several studies have examined the presence of DNA methylation of CpG islands in leukemia. Methylation of SOX17 and RUNX3 genes may play a role in leukemogenesis through silencing tumor suppressor genes. We investigated the methylation status of SOX17 and RUNX3 genes in patients with acute leukemia. Methods: In this case-control study, peripheral blood samples from 100 AML and 10...
متن کاملAnalysis of Expression Of SIRT1 Gene In Patients With Chronic Myeloid Leukemia Resistant To Imatinib Mesylate
Background: Chronic myeloid leukemia is a clonal myeloproliferative disease which is characterized by bcr/abl translocation. With the emergence of tyrosine kinase inhibitors such as imatinib mesylate, significant improvement has been made in treatment of this disease. However, drug resistance against this medicine is still an obstacle. SIRT1 is a gene with deacetylase activity which has been de...
متن کاملCDKN2B methylation correlates with survival in AML patients
Aberrant DNA methylation has been reported as an important phenotype in acute myeloid leukemia. However the clinical significance of methylation changes has not been clear yet. In this study methylation Specific Melting Curve Analysis (MS-MCA) and real time PCR was used to assess the CDKN2B promoter hyper-methylation and gene expression in 59 Iranian acute myeloid leukemia (AML) patients. The i...
متن کاملCDKN2B methylation correlates with survival in AML patients
Aberrant DNA methylation has been reported as an important phenotype in acute myeloid leukemia. However the clinical significance of methylation changes has not been clear yet. In this study methylation Specific Melting Curve Analysis (MS-MCA) and real time PCR was used to assess the CDKN2B promoter hyper-methylation and gene expression in 59 Iranian acute myeloid leukemia (AML) patients. The i...
متن کاملGene Expression and Methylation Pattern in HRK Apoptotic Gene in Myelodysplastic Syndrome
Myelodysplastic syndromes (MDSs) are a clonal bone marrow (BM) disease characterized by ineffective hematopoiesis, dysplastic maturation and progression to acute myeloid leukemia (AML). Methylation silencing of HRK has been found in several human malignancies. In this study, we explored the association of HRK methylation status with its expression, clinical parameters and MDS subtypes in MDS pa...
متن کامل